데이터의 분포값
Degree of scattering

1. 애니메이션

1.1. 당도. 당도편차, 당도편차제곱


2. 설명

2.1. 데이터의 분포값


3. 실습

3.1. 구글시트

3.2. 구글시트 함수

3.3. 실습강의


4. 용어와 수식

4.1. 용어

4.2. 수식


1. 애니메이션



당도.  당도편차, 당도편차제곱


2. 설명

2.1. 데이터의 분포값

데이터의 분포값(measure of dispersion)은 데이터의 분포정도를 나타냅니다. 산포도(degree of scattering) 또는 변산성(variability)라고 부릅니다.  데이터의 분포값에는 우선 데이터의 범위(range)가 있습니다. 범위는 최대값과 최소값의 차이입니다. 중앙값을 기준으로 흩어진 정도를 수치로 나타내는 것에는 사분위수범위 등이 있습니다.

 

평균을 기준으로하는 분포정도(measure of dispersion)에는 분산(variance)과 표준편차(standard deviation)가 있습니다. 분산(variance)은 각 변수값과 평균과의 차이를 제곱한 값들의 대표값을 구한 것입니다. 즉, 변수값에서 평균을 뺀 값(편차)의 제곱의 평균입니다. 또한, 평균과 변수와의 거리제곱의 평균이라고 표현할 수도 있습니다. 그래서 분산은 0이나 양의 수가 됩니다. 직관적으로 본다면 변수값들이 평균을 중심으로 멀리 흩어져 있으면 분산의 값이 커집니다. 그리고, 변수값(데이터값)이 평균 주위에 몰려 있으면 분산의 값이 작아 진다고 볼 수 있습니다.

 

모집단의 분산을 모분산(population variance)이라 부르며, 표본의 분산을 표본분산(sample variance)이라 부릅니다. 모분산과 표본분산의 수식은 차이가 있습니다. 표본분산을 계산할 때(데이터값과 평균과의 거리제곱의 평균을 구할때) 표본의 크기  $n$대신 1을 뺀 $(n-1)$을 사용합니다. 그 이유는 표본분산은 표본 바깥에서 주어진 기준이 아닌 표본 내에서 도출된 표본평균을 기준으로 하기 때문입니다. 즉, 표본에서는 분산의 기준인 평균으로 데이터가 1개 사용되었다는 것을 의미합니다. 예를 들면 마을마다 집들이 서로 얼마나 떨어져서 있는가를 숫자로 표현하고자합니다. 여기서 기준을 이장님댁으로 정합니다. 그렇다면 거리의 평균을 구할 때 당연히 이장님댁을 뺸 나머지 집들의 수로 나누게 됩니다.

 

표본의 크기(데이터의 갯수)가 작으면 표본분산을 구할 때 $n$(표본크기)과 $n-1$의 차이는 크게 나타납니다. 다른 표현으로는 표본에서 각 데이터의 거리가 나타나는 경우의 수는 데이터의 갯수 $n$에서 1을 뺀 수가 된다고 볼 수 있습니다. 분산은 평균값에서 각 변수값까지의 거리를 제곱한 후 그 평균을 구한 것이라는 것을 볼 때 $(n-1)$과 $n$의 차이는 더 큽니다. 

 

표준편차(standard deviation)는 분산의 제곱근으로 정의합니다. 따라서 분산이 구해지면 표준편차는 자동적으로 구해집니다. 표준편차는 데이터와 단위가 같게 되어 값이 실제 단위를 나타냅니다. 모집단의 표준편차를 모표준편차라고 부르며 $\sigma$로 표시합니다. 표본의 표준편차를 표본표준편차라고 부르며 $S$로 표시합니다. 분산은 제곱거리의 평균이어서 현실감을 느끼기가 힘드나 표준편차는 평균이나 변수값과 같은 단위가 되기 때문에 실감할 수 있습니다. 

 

두 개 이상의 표본의 표준편차를 비교할 때에는 표준편차를 평균으로 나눈 변동계수(coefficient of variation, 변이계수)를 사용합니다. 즉, 평균으로 표준화된 표준편차인 변동계수를 사용하면 분자 분모의 단위가 상쇄되고 표준화되어 두 표본의 변동의 비교가 수월합니다.


3. 실습

3.1. 구글시트

회원의 데이터링크 계정으로 구글시트가 복사됩니다.


데이터의 분포값 : 구글시트 실습

3.2. 구글시트 함수

=AVERAGE(E3:E22) : 평균. E3에서 E22에 있는 데이터의 평균.

=F3^2 : 제곱. F3에 있는 데이터의 제곱.

=COUNT(B3:B22) : 데이터개수. B3에서 B22에 있는 숫자형식의 데이터 개수.

=MAX(G3:G22) : 최대값. G3에서 G22에 있는 데이터 중 최대값.

=MIN(G3:G22) : 최소값. G3에서 G22에 있는 데이터 중 최소값.

=SQRT(M3) : 제곱근. M3 값의 제곱근.

=ROUNDUP(SQRT(M3),0) : 올림. M3 값의 제곱근을 올림해서 소수점 0번째자리까지 구함.

=FREQUENCY(G3:G22,J12:J16) : 빈도수. G3에서 G22는 데이터, J12에서 J16은 클래스. 데이터 범위 내에서 클래스의 각 값의 범위 내에 있는 데이터의 개수를 표시함.


3.3. 실습강의

– 데이터

– 평균

– 편차

– 편차제곱

– 편차제곱의 분포



4. 용어와 수식

4.1 용어


데이터

데이터는 질적 또는 양적 변수값의 집합입니다. 데이터와 정보 또는 지식은 종종 같은 의미로 사용하지만 데이터를 분석하면 정보가 된다고 볼 수 있습니다. 데이터는 일반적으로 연구의 결과물로 얻어집니다. 한편, 데이터는 경제(매출, 수익, 주가 등), 정부(예 : 범죄율, 실업률, 문맹율)와  비정부기구(예 : 노숙자 인구 조사)등 다양한 분야에서도 나타납니다. 그리고 데이터를 수집 및 분석하고 시각화할 수 있습니다.

 

일반적인 개념의 데이터는 응용이나 처리에 적합한 형태로 표현되거나 코딩됩니다. 원시 데이터 ( “정리되지 않은 데이터”)는  “정리”되기 전의 숫자 또는 문자의 모음입니다. 따라서 데이터의 오류를 제거하려면 원시 데이터에서 데이터를 수정해야 합니다. 데이터 정리는 일반적으로 단계별로 이루어지며 한 단계의 “정리 된 데이터”는 다음 단계의 “원시 데이터”가 됩니다. 현장 데이터는 자연적인  “현장”에서 수집되는 원시 데이터입니다. 실험 데이터는 관찰 및 기록을 통한 과학적 조사에서 생성되는 데이터입니다. 데이터는 디지털 경제의 새로운 자원입니다.

 

Reference

Data – Wikipedia



빈도수

통계에서 사건의 빈도 (또는 절대 빈도)는 실험이나 연구에서 사건이 발생한 횟수입니다. 이러한 빈도수는 종종 히스토그램으로 표현됩니다.

 

Reference

Frequency (statistics) – Wikipedia



도수분포

통계에서 도수분포(빈도수분포)는 표본의 실험이나 측정항목의 빈도수를 표시하는 표(도수분포표)나 그래프(도수분포도)로 나타냅니다. 도수분포표의 각 항목에는 특정 집단 또는 특정 구간 내의 값이 발생하는 빈도수가 나타납니다. 도수분포표는 표본의 변수 분포를 요약하는 효과적인 방법입니다.

 

Reference

Frequency distribution – Wikipedia



범위

데이터 범위는 가장 큰 값과 가장 작은 값의 차이입니다. 구체적으로 데이터세트의 범위는 가장 큰 값에서 가장 작은 값을 뺀 결과 값입니다. 그러나 설명통계(기술통계)에서 범위개념은 보다 복잡한 의미를 지닙니다. 범위는 모든 데이터를 포함하고 통계적 분산의 표시를 제공하는 최소 간격의 크기입니다. 그것은 데이터와 동일한 단위로 측정됩니다. 최대값, 최소값 두 값만으로 표현되기 때문에 표본크기가 작은 데이터세트의 분산을 표현하는 데 가장 유용합니다.

 

Reference

Range (statistics) – Wikipedia



사분위 범위

사분위 범위 (Interquartile Range, IQR)는 75 ~ 25 백분위 수 또는 상위 및 하위 사분위의 차이로 통계적 분산의 척도입니다.  사분위 범위(IQR)은 “IQR = Q3 – Q1” 식으로 구합니다. 즉, IQR은 3분위수에서 1분위수를 뺀 것입니다. 이 4분위수는 데이터의 상자그림에서 명확하게 볼 수 있습니다. 그것은 정리된 추정량이며 25 % 정리된 범위로 정의되고 일반적으로 사용되는 강력한 통계적 분산의 척도입니다.

 

IQR은 데이터세트를 사분위수로 나누는 것에 기반한 변화(분포, 가변성)의 척도입니다. 사분위수는 순위가 지정된(내림차순이나 오름차순으로 정리된) 데이터 세트를 네 부분으로 나눕니다. 파트를 분리하는 값을 1, 2, 3 분위수라고 부릅니다. 각각 Q1, Q2, Q3으로 표기합니다.

 

Reference

Interquartile range – Wikipedia



백분위 수

백분위 수는 통계에서  관측치의  백분율이 그 이하가 되는 값을 나타내는 값입니다. 예를 들어, 20번째 백분위 수는 관측치의 20%가 발견될 수 있는 값입니다. 백분위 수 순위는 평점에 자주 사용됩니다. 예를 들어, 점수가 86번째 백분위 수(백분위 수 순위 = 86인 경우)라는 것은 이 값 아래에 관측 값의 86%가 있다는 것입니다. 이는 86번째 백분위 수 “안” 에 있는 것과는 다릅니다. 즉, 점수가 관측치의 86%가 아래에 있는 값과 같거나 작다는 뜻입니다.

 

모든 점수는 100번째 백분위 수 안에 있습니다.). 여기서 25번째 백분위 수는 1분위(Q1), 50번째 백분위 수는 2분위(Q2), 75번째 백분위 수는 3분위(Q3)로 각각 부릅니다.

 

Reference

percentile – Wikipedia



분산

확률과 통계에서 분산은 변수와 평균값 간의 편차의 제곱의 기대치입니다. 비공식적으로 분산은 집단 내 숫자가 평균값에서 얼마나 멀리 퍼져 있는지를 나타냅니다. 분산은 통계에서 설명통계, 통계적 추론, 가설검정, 적합성 및 몬테카를로 샘플링 등 많은 곳에 쓰이면서 중심적인 역할을 합니다. 분산은 데이터의 통계 분석이 많이 쓰이는 과학분야에서의 중요한 도구입니다. 분산은 표준편차의 제곱, 분포의 두번째 중심 모멘트, 무작위 변수와의 공분산이며, 집단의 모분산($\sigma ^ 2$), 표본분산($S^2$)이 있습니다 그리고 연산자 이름은 $\mathrm{Var}[X]$로 표현됩니다.

 

Reference

variance – Wikipedia



표준편차

표준편차(모표준편차는 $\sigma$, 표본 표준편차는 $S$를 기호로 사용)는 데이터 값의 다양성이나 분포를 나타내는 척도입니다. 표준편차가 작다는 것은 데이터 값들이 대략적으로 평균(기대값)에 가까이 분포한다는 것을, 표준편차가 높다는 것은 평균에서 멀리 분포한다는 것을 의미합니다.

 

확률변수, 통계적 집단, 데이터의 무한집합 또는 확률분포의 모표준편차는 모분산의 제곱근입니다. 절대편차의 평균보다 정확하지는 않지만 수학의 대수적인 면에서 더 간단합니다. 표준편차가 가지는 장점은 분산과 다르게 데이터와 같은 단위를 사용한다는 것입니다.

 

표준편차는 집단의 분포정도(분산도)를 표현하기 위한다는 것 외에도 통계적 결론에 대한 신뢰도를 측정하는 데에도 사용됩니다. 예를 들어, 투표 데이터의 오류 허용 범위는 투표가 여러번 진행되었을 때 기대되는 표준편차를 계산하여 구하게 됩니다. 이 표준편차의 활용은 추정치의 표준오차, 또는 평균값의 표준 편차라고 부릅니다. 무한한 수의 표본이 추출되고 각 표본의 평균이 계산될 경우 그 집단에서 추출될 수 있는 모든 표본에서 계산되는 표본평균의 표준편차를 표본평균 표집의 모표준편차로 부릅니다. 즉, 표본평균의 표집의 모표준편차가 통계적 결론(모평균 점추정)에 대한 신뢰도로 나타납니다.

 

집단의 모표준편차과 집단에서 추출한 표본에서 구한 표본평균의 표준오차는 서로 다르면서도 연관되어 있다는 것(관측 수의 제곱근과 관련됨)이 매우 중요합니다. 관찰된 오류는 표본평균의 표준 오차(집단의 모표준편차에 표본크기의 제곱근의 역수를 곱한 것)로 계산되며 일반적으로 95% 신뢰구간의 절반, 표준편차의 약 2배(정확하게는 1.96배)입니다.

 

과학에서는 많은 연구자들이 실험 데이터의 표준편차를 기록한 후, 기대했던 값보다 표준편차의 2배가 넘게 차이가 났을 때에만 통계적으로 의미있다고 판단해 일반적인 무작위적 오류를 배제합니다. 또한 표준편차는 투자 변동성의 척도를 수익률의 표준편차로 계산되는 것처럼 금융에서도 중요합니다.

 

집단의 데이터 중 일부만 사용이 가능할 경우, “표준편차의 표본” 또는 “표본표준편차” 이 2가지 표현이 모두 위에서 언급한 양 또는 집단의 모표준편차의 편견없는 기대값을 의미할 수 있습니다.

 

Reference

standard deviation – Wikipedia



4.2 수식


표본모형

랜덤하게 생성(추출)된  표본모형

{$X_1, … , X_n$}

여기서, $X_1, … , X_n$은 서로 독립

$n$은 표본크기

표본의 관측된 값

$x_1, … , x_n$

여기서, $n$은 표본크기


분산(variance)

모분산($\sigma^2$)

$$\sigma^2=\dfrac{\sum\limits_{i=1}^N (x_i-\mu)^2}{N}$$

여기서,  $N$은 유한집단크기 또는 유한집단의 데이터수 또는 유한집합의 원소수 : 무한집단인 경우 $N→∞$

표본분산($S^2$)

$$S^2=\dfrac{\sum\limits_{i=1}^N (x_i-\bar{x})^2}{n-1}$$

여기서,  $n$은 표본크기 또는 표본의 데이터수 또는 표본집합의 원소수


표준편차(standard deviation)

모표준편차($\sigma$)

$$\sigma=\sqrt{\sigma^2}$$

여기서, $\sigma^2$은 모분산

표본표준편차($S$)

$$S=\sqrt{S^2}$$

여기서, $S^2$은 표본분산


변동계수(coefficient of variation, 변이계수)

모변동계수$(CV)$ : 단위는 %

$$CV=\dfrac{\sigma}{\mu}\times 100$$

여기서, $\mu$은 모평균

$\sigma$은 모표준편차

표본변동계수$(CV)$ : 단위는 %

$$CV=\dfrac{S_Y}{\bar Y}\times 100$$

여기서, $\bar Y$은 확률변수 $Y$의 표본평균

$S_Y$은 확률변수 $Y$의 표본표준편차


범위(range)

범위 = 최대값 – 최소값

범위는 데이터의 최대값과 최소값의 차이


사분위수범위(interquartile range, IQR)

일사분위수(1st quartile, $Q_1$)

$Q_1$ = 25% 백분위수

이사분위수(2nd quartile, $Q_2$)

$Q_2$ = 50% 백분위수 = 중앙값($m$)

삼사분위수(3rd quartile, $Q_3$)

$Q_3$ = 75% 백분위수

사분위수범위($\mathrm{IQR}$)

$$IQR = Q_3-Q_1$$


백분위수(percentile)

$p$% 백분위수 = 자기값 이하로 적어도 $p$%의 관측값이 있고 자기값 이상으로 적어도 $(1-p)$%의 관측값이 있는 수