3차원 산점도 – 3 dimensional scatter plot

목차

1. 애니메이션

1. 3차원 산점도


2. 설명

2.1. 3차원 산점도


3. 실습

3.1. 구글시트

3.2. 구글시트 함수

3.3. 실습강의


4. 용어와 수식

4.1. 용어

 


1. 애니메이션



3차원 산점도


2. 설명

2.1. 3차원 산점도

딸기 20개의 출하일과 과중과 당도를 관측한 데이터가 있습니다. 데이터를 보면 딸기 하나에 출하일, 과중, 당도, 세 개의 데이터(변수값)가 있습니다. 딸기의 출하일과 과중과 당도의 관계를 탐색하기 위하여 3차원 산점도(scatter plot)를 그립니다.

 

딸기 하나를 한 점(point)으로 생각하면 딸기가 세 변수를 가지므로 3차원 직각 좌표계에  점으로 딸기를 나타낼 수 있습니다. 직각 좌표계의 3축(3axis)은 서로 독립입니다. 즉, 서로 영향을 주지 않습니다. 그래서 3차원 산점도를 그리면 딸기가 가지는 세 변수의 관계를 관찰할 수 있습니다.

 

딸기가 20개이므로 20개의 점이 3차원 좌표계(공간좌표계)에 찍힙니다. 3차원 산점도를 그릴 때는 보통 결과의 원인이 되는 변수로 평면을 구성하고  관심있는 결과변수를 평면과 직교하는 축(axis)에 나타냅니다. 애니메이션에서는 딸기의 당도를 결과변수로 놓았습니다. 여기서, 결과변수를 종속변수(dependent variable)로 표현합니다. 따라서 원인변수는 종속변수에 영향을 주는 변수이며 보통 서로 독립인 경우를 가정하기 때문에 독립변수(indendent variable)라고 부릅니다.

 

애니메이션에서 관심있는 변수를 당도로 하면 과중이 클수록 당도가 높게 나옵니다. 딸기가 무거울수록, 즉, 큰 딸기일수록  달다고 해석할 수 있겠습니다. 그리고 출하일이  겨울에 가까울수록 딸기가 달다는 것을 알 수 있습니다. 이것을 한번에 나타내면 과중이 작을수록 출하일이 봄에 가까울수록 당도가 떨어짐을 보여줍니다.

 

산점도는 데이터가 가지는 여러 변수의 관계를 분석할 때 유용합니다. 특히,  두 연속형 변수의 관계를 볼 때 2차원 산점도를 통하여 명확하게 두 변수의 관계를 탐색할 수 있습니다. 그래서 3차원 산점도를 3개의 평면에 투영해서 3개의 2차원산점도로 분해한 후 두 변수의 관계를 분석하기도 합니다.


3. 실습

3.1. 구글시트

회원의 데이터링크 계정으로 구글시트가 복사됩니다.


3차원 산점도 : 구글시트 실습

3.2. 구글시트 함수

=MIN(B3:B22) : 최소값. B3에서 B22에 있는 데이터 중에서 최소값을 표시함. 

=MAX(B3:B22) : 최대값. B3에서 B22에 있는 데이터 중에서 최대값을 표시함.


3.3. 실습강의

– 데이터

– 범위

– 산점도

– 실습 안내



4. 용어와 수식

4.1. 용어


산점도

산점도(산포도)는 일반적으로 여러 변수를 가지는 개체를 표시하기 위해 직각  좌표계를 사용하는 그래프 유형입니다. 점이 시각적으로 정의된 경우 (색상 / 모양 / 크기) 하나의 추가 변수로 표시 될 수 있습니다. 3차원 산점도에서 데이터는 수평 축상의 위치를 결정하는 하나의 변수 값과 수직축 상의 위치를 결정하는 다른 변수의 값을 갖는 점들의 모음으로 표시됩니다.

 

Reference

Scatter plot – Wikipedia



종속변수

수학적 모델링, 통계 모델링 및 실험과학에서 종속변수의 값은 독립변수의 값에 따릅니다. 즉, 종속변수는 독립변수에 따른  결과를 나타냅니다. 통계에서 종속변수의 회귀를 일으키는  회귀변수로도 나타나는 독립변수는 입력되어져서 종속변수의 변동의 원인이 될 수 있습니다. 실험에서는 실험자가 다루는 변수를 독립변수라고 할 수 있습니다. 모델과 실험은 독립변수가 종속변수에 미치는 영향을 살펴봅니다. 때로는 직접적인 영향을 주지 않더라도 잠재적인  교란을 설명하는 것과 같은 이유로도 독립변수를 고려합니다.

 

Reference

dependent variable – Wikipedia