지수함수의 밑인 a를 자연상수 e로 표현하면 지수함수는?
목차 a의 자연로그를 증가율로 하는 지수함수입니다. $$a^x=left(e^{ln(a)}right)^x=e^{xln(a)}$$ 여기서, $ln(a)$는 증가율(growth rate) 어떤 양의 실수 $a$에 대해서도 지수함수 $a^x$는 $e$를 밑으로 하는 지수함수 $e^{xln(a)}$로 나타낼 수 있습니다. 1. 밑의 구간에 따른 지수함수의 성질 Table1. 지수함수의 밑 a의 구간에 따른 지수함수의 성질 밑 a의 구간 ln(a)의 부호 지수형태 표현 도함수 및 적분함수 지수함수 성질 ( 0 < […]
지수함수에서 밑이 양의 실수 a이고 지수가 0일 때의 변화율은?
목차 a의 자연로그값, ln(a)입니다. 밑(base)이 $a$인 지수함수(exponential function), $f(x)=a^x$에서 $x=0$일 때의 변화율은 $ln(a)$입니다. 변화율은 미분계수(derivative)입니다. $$f'(0) = lim_{h to 0} frac{f(0+h) – f(0)}{h}= lim_{h to 0} frac{a^h – 1}{h}= ln(a)$$ 여기서, $f(0) = a^0 = 1$ $f(0+h) = a^h$ Fig.1 지수가 0이고, 밑이 2, e, 5일 때 변화율(접선의 기울기) 비교 1. 지수함수를 자연상수(e)로 표현 지수함수 […]
지수함수에서 지수가 0일 때, 변화율이 1이 되는 밑의 값은?
목차 자연상수 e(약 2.71828…)입니다. 지수함수에서 밑을 아무 번도 곱하진 않은, 즉 지수가 0인 지수함수의 함수값은 항상 1입니다. $$a^0=1$$ 여기서, $a$는 양의 실수 지수가 0인 지점에서 함수값처럼 변화율(기울기)마저 정확히 1이 되는 특별한 밑이 자연상수 e입니다. $$e^0 = 1 quad (text{함수값}), quad left. frac{d}{dx}e^x right|_{x=0} = 1 quad (text{기울기})$$ 여기서, $left.frac{d}{dx}e^x right|_{x=0} =left.limlimits_{Delta x to 0} frac{e^x( […]
결합확률분포는 조건부분포들의 집합인가요?
목차 네. 결합확률분포는 한 방향으로의 모든 단면(조건부분포)들의 집합입니다. 결합확률분포에서 조건부분포는 조건확률변수의 값이 정해졌을 때 모든 가능한 분포입니다. 연속결합확률분포에서 조건부분포는 특정 조건변수의 값이 주어졌을 때 얻어지는 결합확률분포의 단면입니다. 다만, 단면 자체는 아직 확률분포가 아니며, 이를 확률분포로 만들기 위해서는 그 단면을 얻기 위한 조건변수의 확률밀도를 정규화상수로 사용하여 분포의 적분값이 1이 되도록 합니다. 조건부분포를 확률분포의 조건을 만족하게 조정하여 […]
n개 확률분포의 결합확률분포를 분해할 수 있나요?
목차 네, 연쇄법칙에 따라 n개의 조건부확률분포의 곱으로 분해할 수 있습니다. $n$개의 확률변수 $X_1, X_2, cdots, X_n$의 결합확률분포는 $n$개의 조건부확률분포의 곱으로 분해할 수 있습니다. $$P(X_1, X_2, dots, X_n);=;P(X_1 mid varnothing), P(X_2 mid X_1), P(X_3 mid X_1, X_2), cdots , P(X_n mid X_1, dots, X_{n-1})$$ 여기서, $P(X_1 mid varnothing)$는 조건이 없는 $X_1$의 확률분포, 즉, 주변확률분포: $P(X_1 mid […]
집합에 수학적 구조를 추가한 것은 무엇?
목차 공간(space)이라고 부릅니다. 확률공간(probability space)은 “표본공간”이라는 근원사건(elementary)의 집합(set)에 수학적 구조인 “사건들의 대수($sigma$-algebra)”와 이 대수에 정의된 “확률측도(probability measuer)”를 추가합니다. 사건(event)은 근원사건을 원소로 하는 표본공간의 부분집합입니다. “$sigma$-대수”는 사건들의 유한 합집합에 대해 닫혀 있습니다. 확률공간에서 시그마-대수(代數)는 사건공간이라고도 부르며 사건들에 대해 합, 교, 여집합 등 집합 연산을 수행해도 그 결과가 항상 포함되는 체계입니다. 1. 확률공간 확률공간(probability space)은 표본공간을 정의하고, […]
독립적인 두 확률밀도함수의 곱과 합은 확률분포인가?
CONTENTS 곱(product)은 확률밀도함수가 되나 합(sum)은 정규화가 필요합니다. 1. 독립적인 두 확률밀도함수의 곱 확률변수 X와 Y가 독립(independent)일 때,그들의 공동확률밀도함수(Joint PDF) 는 개별 확률밀도함수의 곱으로 표현됩니다. $$f_{X,Y}(x, y) = f_X(x) f_Y(y)$$ (1) 비음수 조건$$f_X(x) geq 0, quad f_Y(y) geq 0 Rightarrow f_{X,Y}(x, y) = f_X(x) f_Y(y) geq 0$$ (y)≥0 이므로 곱도 항상 0 이상입니다.(2) 정규화 조건확률밀도함수는 다음 […]
베이지안 추론 ?
CONTENTS 베이지안 추론 1 Videos 베이지안 추론 3:32 베이지안(Baysian)은 모수를 확률변수로 봅니다. 베이지안 추론은 관측된 데이터로 모수의 사전분포를 사후분포로 갱신하는 과정입니다 모수의 사전분포는 데이터 관측 이전의 모수에 대한 정보입니다. 데이터분포 $f(x mid theta)$의 형태는 통계모델의 가정에 의해 결정되며, 이를 관측값 $x$를 고정하고 모수 $theta$의 함수로 해석한 것이 우도함수 $L(theta mid x)$입니다. $$L(theta mid x) propto […]
최대우도법?
CONTENTS 최대우도법은 주어진 데이터로 모델하는 확률분포의 모수를 계산하는 방법론입니다. 최대우도법(Maximum Likelihood Method)을 통해 최대가능도추정량이 도출됩니다. 최대가능도추정량(Maximum Likelihood Estimator, MLE)은 추출한 표본데이터에서 우도(가능도)를 최대로 하는 모수의 추정량을 나타내는 수식입니다. https://www.datadata.link/wp-content/uploads/2025/02/ANIMATION-최대우도법-1.mp4 최대우도법 최대우도법(Maximum Likelihood Method, MLM)은 주어진 데이터를 가장 잘 설명하는 확률분포의 모수(parameter)를 점추정하는 방법론입니다. 최대우도법에서는 우도함수(likelihood function) $L$을 최대화하는 모수 값 $hat {theta_{MLE}}$을 최적화 알고리즘으로 찾습니다. […]
연속확률분포에서 분위수와 누적분포함수의 관계는?
CONTENTS 역함수 관계입니다. 분위수(Quantile, $Q(p)$)는 주어진 누적확률값($p$) 보다 큰 누적확률을 가지는 확률변수값 중 가장 작은 값($x$)을 변환하는 함수입니다. $ x=Q(p)$ 누적분포함수(CDF, $F(x)$)는 $-infty$에서 주어진 확률변수값($x$)까지의 누적확률($p$)을 반환하는 함수입니다. $p=F(x)$ 분위수 분위수 $Q(p)$는 누적확률 $p$에 해당하는 확률변수값 $x$를 반환합니다. 즉, 분위수는 분위수(Quantile, $Q(p)$)는 주어진 누적확률값($p$) 보다 큰 누적확률을 가지는 확률변수값 중 가장 작은 값($x$)을 변환하는 함수입니다. […]