확률이론에서의 표본과 통계학에서의 표본은 의미가 같은가?
CONTENTS 아니오, 용어는 같지만 의미는 다릅니다. 확률이론에서의 표본은 표본공간의 원소로서 더 이상 나눌 수 없는 사건의 결과입니다. 통계학에서의 표본은 모집단의 부분집합으로서 모집단의 특성을 추정합니다. 확률이론에서의 표본 확률이론(probability theory)에서는 확률공간(probability space)으로 확률(probability)을 설명합니다. 확률공간의 3요소는 표본공간(sample space), 시그마대수($sigma$-algebra), 확률측도(probility measure) 입니다. 표본공간에서 나올 수 있는 단일 결과를 표본(sample)이라고 합니다. 이는 더 이상 나눌 수 없는 개별적인 […]
Quiz – 가설검정

데이터 데이터셋 데이터설명 데이터시각화 연구계획 데이터종류 1. 연속형 데이터의 예로 올바른 것은? 국가명 석차 등급 몸무게(kg) ID 번호 2. 질적 데이터의 예로 적합한 것은? 온도(℃) 소득(KRW) 성별 키(cm) 3. 양적 데이터의 측정에 사용되는 척도가 아닌 것은? 비례척도 간격척도 순서척도 명목척도 4. 비정형 데이터의 예는? 주민등록번호 제품의 무게(g) 텍스트 문서 회사의 매출액(KRW) 5. 도수 데이터에 해당하는 […]
확률분포-연속
연속균등분포 – Continuous uniform distribution 표기 Support Parameter 확률분포도 확률밀도함수(f) – 누적분포함수(F) 모멘트생성함수 엔트로피 $f(x , ; a, b)$ $X sim U(a,b)$ $x in [a, b]$ $a$와 $b$ $a$와 $b$는 실수 $ a < b $ $f(x , ; a, b)=dfrac{1}{(b-a)}$ for $a ≤ x ≤ b$ $f(x , ; a, b)=0$ for $x < […]
DATA SCIENCE – 반응표면방법 논문작성
DATA SCIENCE Days Hours Minutes Seconds
DATA SCIENCE – 가설검정 논문작성
DATA SCIENCE 데이터 모델링 데이터분석 데이터셋 데이터설명 데이터시각화 연구계획 확률모델 확률분포 새확률변수 통계모델 집단비교 관계비교 분포비교 OPEN 데이터종류 OPEN 대표값 회원 분포값 OPEN 좌표계 회원 산점도 OPEN 가설수립 회원 모수검정과 비모수검정 회원 완전확률화 실험설계 OPEN 확률변수 OPEN 정규분포 구독 t분포 구독 카이제곱분포 구독 F분포 OPEN 대응된 두 확률변수의 차이평균 구독 독립된 두 집단의 평균차이 구독 […]
모든 집단의 평균이 같을 때, 모집단내 “집단간분산”과 “집단내분산”이 같은 이유는?
[ QA ] CONTENTS “집단내변동”만으로 두 분산이 정해지기 때문입니다. 모든 집단의 평균이 같다면 “집단간변동”은 없습니다. 분산분석(ANOVA)의 기본 개념 총변동($SS_T$)은 전체 데이터의 변동성을 나타내며, 집단간변동($SS_B$)과 집단내변동($SS_W$)의 합으로 표현됩니다. $$SS_T=SS_B+SS_W$$ $MS_B$은 집단간분산이며 집단평균의 변동입니다. 집단간변동과의 관계는 다음식으로 표현됩니다 $$MS_B = dfrac{SS_B}{text{집단간 자유도}}$$ $MS_W$은 집단내분산이며 각 집단내에서 데이터의 변동입니다. 집단내변동과의 관계는 다음식으로 표현됩니다. $$MS_W = dfrac{SS_W}{text{집단내 자유도}}$$ 등분산 […]
모집단에서 집단간분산과 집단내분산이 동일해지는 경우는?
CONTENTS 모집단내 각 집단의 모평균이 같을 때 입니다. 이 경우, 집단간분산과 집단내분산은 모집단의 분산을 추정합니다. 무한 모집단(population) 내 각 집단(group)의 크기도 무한대입니다. 모집단내 집단의 변동 모집단에서 무작위로 표본을 추출할 때, 그 표본이 충분히 크면, 즉, 표본의 크기가 무한대에 가까워지면, 그 표본은 모집단의 특성을 정확하게 반영합니다. 아찬가지로 모집단내 집단 간의 평균이 같을 때 집단간 변동의 차이는 […]
일원분산분석에서 F통계량, F검정통계량, F검정통계값의 관계는?

CONTENTS 귀무가설을 통해 , F통계량의 변수의 수를 줄여 F검정통계량을 구합니다. 여기서, 귀무가설은 알 지 못하는 모수에 대한 가설입니다. F검정통계량은 확률변수이며 정의된 확률분포함수로 표현합니다. 표본데이터를 통해, F검정통계량의 함수값인 F검정통계값을 구합니다. 일원분산분석에서 F통계량 일원분산분석에서의 F통계량을 함수로 보면 다음과 같이 표현할 수 있습니다. $$F(chi^2_B, df_B, chi^2_W, df_W) = dfrac{dfrac{chi^2_B}{df_B}}{dfrac{chi^2_W}{df_W}}= dfrac{dfrac{S_{B}^2}{sigma_{B}^2}}{dfrac{S_{W}^2}{sigma_{W}^2}}$$ 여기서, $chi^2_B$는 표본내 집단의 카이제곱: $chi^2_B=df_Bdfrac{S_B^2}{sigma_B^2}$ $chi^2_W$는 표본내 […]
데이터사이언스 용어 – Wikipedia
TERM 데이터 용어 확률 용어 통계 용어 데이터사이언스 용어 – Wikipedia 데이터 데이터는 질적 또는 양적 변수값의 집합입니다. 데이터와 정보 또는 지식은 종종 같은 의미로 사용하지만 데이터를 분석하면 정보가 된다고 볼 수 있습니다. 데이터는 일반적으로 연구의 결과물로 얻어집니다. 한편, 데이터는 경제(매출, 수익, 주가 등), 정부(예 : 범죄율, 실업률, 문맹율)와 비정부기구(예 : 노숙자 인구 조사)등 다양한 분야에서도 […]
t통계량, t검정통계량, t검정통계값의 관계는?

CONTENTS 귀무가설을 통해 , t통계량의 변수의 수를 줄여 t검정통계량을 구합니다. 여기서, 귀무가설은 알 지 못하는 모수에 대한 가설입니다. t검정통계량은 확률변수이며 정의된 확률분포함수로 표현합니다. 표본데이터를 통해, t검정통계량의 함수값인 t검정통계값을 구합니다. t통계량, t검정통계량, t검정통계값의 관계 t통계량을 함수로 보면 다음과 같습니다. $$t(bar{X}, mu, s, n) = dfrac{bar{X} – mu}{dfrac{s}{sqrt{n}}}$$ 여기서, $t$는 t통계량 $nu$는 자유도: $nu=n-1$ $n$은 표본크기 $Gamma(,,,)$는 […]