$f(x \, | \alpha, \beta)$
$X \sim \text{Beta}(\alpha, \beta)$
$X$
$x \in [0, 1]$
$x$는 성공확률
$X=\dfrac{Y}{Y + Z} \sim \mathrm{Beta}(\alpha, \beta)$
여기서, $Y \sim \mathrm{Gamma}(\alpha, 1), \quad Z \sim \mathrm{Gamma}(\beta, 1)$
$\alpha$와 $\beta$
$\alpha$는 성공횟수
$\alpha$는 양의 실수
$\beta$는 실패횟수
$\beta$는 양의 실수
$f(x \, | \alpha, \beta)=\dfrac {x^{\alpha -1}(1-x)^{\beta -1}}{B (\alpha ,\beta)}$
여기서, $B$는 베타정규화함수:
\[
B(\alpha, \beta) = \int_0^1 t^{\alpha – 1} (1 – t)^{\beta – 1} dt
\]
베타정규화화함수를 감마함수로 표현
$B(\alpha ,\beta )=\dfrac {\Gamma (\alpha )\Gamma (\beta )}{\Gamma (\alpha +\beta )}$
여기서, $\Gamma(\alpha)$는 감마함수로, $\alpha$가 정수일 경우 $ (\alpha-1)! $와 동일
$$M_{X}(t)=1+\sum _{k=1}^{\infty }\left(\prod_{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}$$
$\mathrm {E} [X]=\dfrac{\alpha}{\alpha +\beta}$
$$\mathrm {E} [\ln X]=\psi (\alpha )-\psi (\alpha +\beta)$$
$ \mathrm {Var} [X]={\dfrac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}$
$\mathrm {Var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )$
$\ln \mathrm {B} (\alpha ,\beta )-(\alpha -1)\psi (\alpha )$
$-(\beta -1)\psi (\beta )$
$+(\alpha +\beta -2)\psi (\alpha +\beta )$