QA : 5
DATA SCIENCE : 26
TABLE : 6
TERM : 3
eISSN 2280-2211

[ QA ]

모델링 ?

ARTICLE CONTENTS

Modeling

모델

모델이란?

모델은 현실 세계의 복잡한 시스템이나 데이터를 수학적, 통계적, 또는 컴퓨터 프로그램의 형태로 단순화하여 표현한 것입니다. 데이터 과학에서 모델은 주어진 데이터로부터 패턴을 찾아내어 예측이나 분류 등의 작업을 수행할 수 있도록 만든 수식입니다.

모델의 유형

  • 예측 모델: 주어진 입력 데이터로부터 미래의 결과를 예측하는 데 사용됩니다. 예를 들어, 매출액 예측, 주식 가격 예측 등이 있습니다.
  • 설명 모델: 데이터의 구조나 패턴을 설명하는 데 중점을 둡니다. 예를 들어, 클러스터링을 통해 고객 그룹을 식별하거나, 회귀 분석을 통해 변수 간의 관계를 이해하는 것입니다.

모델링

모델링은 현실 세계의 데이터 수집과 직관 등을 통해 모델을 만들고, 데이터를 모델에 넣어서 테스트해보고, 모델과 실제와의 오차를 줄여나가는 과정을 말합니다.

Terminology

표본분포(표집분포, sampling distribution, finite-sample distribution)

통계에서 표본의 분포는 표본분포(sampling distribution) 또는 유한표본분포( finite-sample distribution)라 불리우기도 합니다. 표본분포는 정해진 무작위 표본추출을 기반으로 한 확률분포입니다. 여러가지의 관측(observations)결과가 있는 매우 많은 표본의 통계량(예를 들어 표본평균 또는 표본분산)을 계산한다면, 표본분포는 그 표본이 가지는 확률변수의 확률분포라고 할 수 있습니다. 따라서 많은 경우, 하나의 표본을 관찰하고 표본분포는 이론적으로 구합니다.

표본분포는 통계적 추론(statistical inference)을 위한 핵심 단순화과정이기 때문에 통계에서 매우 중요합니다. 보다 구체적으로, 표본분포의 분석시 고려사항은 표본통계량의 공동확률분포(joint probability distribution)보다는 모집단(통계집단) 확률분포의  조사 기반으로의 사용입니다.

출처

Sampling distribution – Wikipedia

모수(매개변수, parameter)

통계적 매개변수 또는 모집단 매개변수는 통계량 또는 확률분포를 설명하는 데 사용되는 변수입니다. 매개변수는 모집단이나 통계모델의 수치적 특성이라 할 수 있습니다.

색인 분류된  집단의 분포가 있다고 가정해 봅니다. 색인이 집단의 분포의 매개변수로도 작용한다면, 그 집단은 매개변수화된 집단이라 할 수 있습니다. 예를 들어, chi-squared 확률분포를 가지는 집단은 자유도에 의해 색인되어 분류될 수 있습니다. 자유도는 chi-squared 분포의 매개변수이므로 chi-squared 분포를 가지는 집단은 자유도라는 매개변수로 매개변수화 되었다고 할 수 있습니다.

출처

Statistical parameter – Wikipedia

중심극한정리(central limit theorem)

확률이론에서 중심극한정리(CLT, Central Limit Thorem)는 독립변수가 추가될 때, 어떤 조건에서는 원래 변수가 정규분포가 아니더라도 표준화된 합(예를 들면 표본크기로 표준화된 표본평균)이 정규분포(일명 “종 모양”)에 가까워진다는 것을 말합니다. 이 이론은 정규분포에 적용되는 확률 및 통계 방법이 다른 형식의 분포를 가지는 많은 경우에도 사용될 수 있음을 나타내기 때문에 확률에서 매우 중요합니다.

예를 들어, 다수의 측정값으로 구성된 표본이 있고, 각 측정값은 다른 측정값과 관계없이 무작위로 생성되고 그 값들의 산술평균을 계산한다고 가정해 봅니다. 이 과정이 여러 번 이루어진다면, 중심극한정리에 따라 이 평균의 분포는 정규분포에 근사합니다. 간단한 예로 동전을 여러 번 던질 경우 앞면이 몇 번 나올지에 대한 확률분포는 던진 횟수의 절반이 평균이 되는 정규분포에 가까워집니다(무한대로 던지게 되면 정규 분포와 같게 됩니다).

중심극한정리는 여러가지의 변형된 정리가 있습니다. 일반적인 형태에서는 확률변수가 동일하게 존재하여야 합니다. 하지만 변형된 정리에서는, 평균의 확률분포의 정규분포로에 대한 근사는 조건만 만족한다면 동일하지 않은 분포나 독립적이지 않은 측정에서도 일어납니다. 이 정리의 처음 형태(정규분포를 이항분포에 대한 근사로 사용할 수 있다)는 현재 드므와르 라플라스 정리로 알려져 있습니다.

출처

Central limit theorem – Wikipedia

자유도(degree of freedom)

통계에서 자유도는 통계의 최종 산출과정에서 사용되는 변할 수 있는  값들의 갯수입니다.

한편, 동적 계(시스템)가 움직일 수 있는 독립적인 방법의 수도 자유도라 합니다. 즉, 동적 계(시스템)에서의 자유도는 시스템의 상태를 확정 지을수 있는 최소의 독립 좌표수라고 정의할 수 있습니다. 예를 들면, 3차원 공간에서의 계의 운동은 6자유도로 표현합니다. 즉, 선운동의 방향 3자유도와 원운동의 방향 3자유도로 표현합니다. 계의 위치도 마찬가지로 6자유도입니다. 계의 공간에서의 위치를 지정하는 3개의 좌표와 계의 방향을 지정하는 방향벡터는 3개의 좌표를 가지고 있습니다.

통계의 모수(매개변수, parameter)값은 정보나 데이터의 양에 따라 달라집니다. 모수의 추정에 들어가는 독립적인 정보의 수를 통계에서는 자유도라 부릅니다. 일반적으로, 자유도는 모수의 추정에 들어간 독립변수들의 수에서 모수의 추정에서 중간 단계로 사용된 모수의 수를 뺀 값입니다. 예를 들면,  표본분산은 표본크기($n$ )로 표현되는 개수의 확률변수들로부터 1번의 연산을 거친  모수인 표본평균에서의 거리로 구하기 때문에 표본분산은 표본평균의 갯수 1을 뺸  $(n-1)$의 자유도를 가집니다.

수학적으로, 자유도는 확률변수 또는 확률벡터의 차원 수, 또는 본질적으로는 “자유로운” 구성 요소의 수로 볼 수 있습니다. 이 용어는 특정 임의 벡터가 선형 부분 공간에 속하도록 제한되어 있고 자유도가 공간의 차원을 나타내어 선형모델(선형회귀 분석, 분산분석)에 주로 사용됩니다. 자유도는 또한 벡터의 제곱 크기(좌표의 제곱합)와 연관된 통계에서 나타나는 카이제곱 및 기타 분포의 모수(매개변수, parameter)와 관련됩니다.

출처

Degrees of freedom (statistics) – Wikipedia