완전확률화 실험설계 Random design of experiment

목차




3. 실습
3.1. 구글시트
3.2. 구글시트 함수 설명
3.3. 강의 영상

 


1. 애니메이션



완전확률화 실험설계

 


2. 설명

인자(factor, 원인변수)에 따른 결과변수를 관측하여 결과에 미치는 원인을 살펴보는  실험을 설계한다고 할 때, 가장 중요한 것은 관심을 가지는 원인이외의 다른 원인이 결과에 영향을 미치면 안된다는 점입니다. 예를 들어, 자동차 메이커별 동급모델(A, B, C)의 1리터당 주행거리(연비)를 비교하는 실험을 설계한다고 하면 우선 관심을 가지는 인자(factor, 원인변수)는 메이커별 자동차 모델이며 관심을 가지는 결과변수는 연비입니다. 그리고 원인변수가 갖는 변수값인 수준(level)은 A, B, C로 표현되는 각 자동차 메이커의 동급모델입니다. 원인변수인자, factor)는 명목척도로 구해지는 범주형변수이며, 결과변수는 비례척도로 구해지는 연속형변수입니다. 차종(자동차 메이커의모델)별로 연비를 관측할 때 실험 기간이 길 수도 있고 비용 등 여러 가지 이유로 차종별 차를 많이 추출하기 어렵습니다.

 

한 원인변수(메이커별 동급 차종)의 변수값(A, B, C)인 차종간에  존재할 수 있는 차이를 정확하게 파악하기 위해서는 다른 원인들의 영향을 될 수 있는 대로 적게 해 주는 것이 좋습니다. 이를 위한 방법 중의 하나는 실험 전체를 완전확률화(무작위, random)하게 하는 것입니다. 같은 자동차 모델이라도 연식에 따른 영향과 각 자동차별 다름(변동)을 최대한 줄이기 위해서  각 자동차 메이커의 동급모델 중에서 실험시간과 실험비용을 고려해서 무작위(완전확률화)로  신차 5대를 선정하였습니다.  표본을 무작위로 추출하였다고 해도 동일한 조건하의 연비측정을 위해 한 운전자가 모든 15대의 차를 운전해 실험해 볼 수도 있지만 하루에 3대밖에 측정할 수 없다면 총 5일에 걸쳐서 측정을 하게 됩니다. 이 경우 연비를 측정하는 5일동안  날씨나 풍속, 풍향 등 여러 환경이 달라 질 수 있어 측정된 값이 실험날짜에 영향을 받게 됩니다.

 

최종적으로 하루에 모든 차의 연비를 측정하기 위하여 다섯 명의 운전자(1, 2, 3, 4, 5)가 차를 운전하는 실험설계를 하였다면 이번에는 자동차의 연비는 운전자에 따라 영향을 받을 수 있는 문제가 발생합니다.  그래서 15대의 차를 5명의 운전자에게 무작위(random)로 3대씩 배정한 후 실험의 순서 역시 무작위로 하는 완전확률화 실험설계를 이어 갑니다. 15대의 차에 1번부터 15번까지의 번호를 부여한 다음, 추첨으로 나오는 번호순서대로 연비를 측정합니다. 이와 같이 실험하면 운전자에 의한 변동이 전체 관측값에 균등하게 영향을 미치어 다른 운전자로 인해 연비가 달라질 가능성이 줄어듭니다. 이와 같이 모든 실험과정에서 무작위를 도입하는 실험방법을 완전확률화계획법(completely randomized design)이라 부릅니다. 

 

위의 요인외에도 연비에 대한 환경별 차종의 장점(예를 들면 정차가 심한 도심보다는 고속도로에서 연비가 높게 개발된 차)을 모두 동일하게 하는 완전화확률 실험설계를 하는 것은 어렵습니디. 즉, 어느 도로에서 실험할 것인지를 무작위(추첨)으로 하기에는 무리가 있습니다. 따라서 완전확률화 실혐설계는 적용하는 범위를 정해야 하며 이는 실험의 목적에 따르는 것이 중요합니다. 정리하면 실험의 목적을 분명히 정하고 완전확률화 실험설계를 적용하는 것이 순서입니다.

 

다음의 표는 추첨(제비뽑기, 프로그램으로 난수를 발생시켜 정하기)에 의해 운전자와 3메이커별 5대의 차가 대응된 실험설계를 보여 줍니다. 기호 A, B, C는 다른 자동차 메이커의 차종을 의미합니다.

 

완전확률화계획법에 따른 실험설계의 예

운전자 1 2 3 4 5
표본추출된 차종(메이커별 자동차모델) B1 A2 B2 C1 A4
   B5 C4 A1 A3 C3
   C5 B4 A5 B3 C2

 


3. 실습



<실습 방법>

본인의 데이터링크 계정으로 구글시트를 복사하신 후, 실습하실 수 있습니다. 

구글시트 사용법 크롬 설치

<구글시트 함수>

=ROWS(F2:F2) : 지정된 배열 또는 범위에 있는 행의 개수.

=RANDBETWEEN(1,100) : 두 값 사이(두 값 포함)의 고르게 분산된 정수인 난수를 반환.

=INDIRECT(D3&”:”&E3) : 문자열로 지정된 셀 참조를 반환.

=COUNTIF(F2:F2, ROW(D3:E3)) : 범위에서 조건에 맞는 개수를 표시.

=NOT(논리표현식) : 논리 값의 역을 반환.

=LARGE(데이터집합, n) : 데이터 집합에서 n번째로 큰 요소를 반환.

=ARRAYFORMULA : 배열 수식에서 여러 행 또는 열에 반환된 값을 표시.

=ARRAY_CONSTRAIN : 배열 결과를 지정된 크기로 제한.

=VLOOKUP(H3,A:B,2,FALSE) : 열 방향 검색. A:B열의 첫 번째 열에서 H3값이 있는 행의 2번째 값을 표시합니다. FALSE를 입력하면, 완전히 일치된 값만 표시합니다. FALSE가 아닌 TRUE를 입력하면, H3에 근접한 값(H3보다 작거나 같은 값)이 있는 행의 2번째 값을 표시합니다.

=AVERAGE(B3:B1002) : 평균. B3에서 B1002에 있는 데이터의 평균.

=VARP(B3:B1002) : 모분산. B3에서 B1002에 있는 데이터의 모분산. 편차제곱합을 데이터 개수로 나눔.

=STDEV.P(B3:B1002) : 모표준편차. B3에서 B1002에 있는 데이터의 모표준편차. 모분산의 제곱근.

=COUNT(I3:I22) : 데이터 개수. I3에서 I22에 있는 숫자로 표시된 데이터의 개수.

=VAR.S(I3:I22) : 표본분산. I3에서 I22에 있는 데이터의 표본분산. 편차제곱합을 데이터 개수 -1로 나눔.

=STDEV.S(I3:I22) : 표본표준편차. I3에서 I22에 있는 데이터의 표본표준편차. 표본분산의 제곱근.

=AK3/SQRT(AH3) : AK3 값을 AH3의 제곱근으로 나눔. 이 실습에서는 표준오차를 계산함.

=T.INV(1-(1-AN3)/2,AH3-1) : T확률분포에서 T값을 계산. T.INV(확률, 자유도)로 구성. 이 실습에서는 AN3에 95% 신뢰수준을 입력하였는데, 양측검정에서는 양쪽 끝 확률이 각각 2.5%가 되어야 함. 따라서, 1-(1-0.95)/2를 하면 누적확률밀도가 0.975, 즉 97.5%가 되어서, 양쪽 끝 확률이 각각 2.5%인 T값을 얻을 수 있음.

=AND(AR3>=AP3, AR3<=AQ3) : 입력된 조건이 모두 참이면 TRUE, 입력된 조건 중 하나라도 거짓이면, FALSE를 표시. AR3값이 AP3 이상이고, AQ3 이하이면 TRUE를 표시함.



<실습강의 내용>

  • 집단랜덤 샘플링(완전확률화하여 표본을 추출)
  • 표본통계량
  • 표본통계량으로 집단의 모수 추정 : 점 추정, 구간 추정
  • 샘플링된 빈도 수
  • 실습 안내